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Applied AI Software Engineering: RAG
Retrieval-Augmented Generation (RAG) is a common building block of AI
software engineering. A deep dive into what it is, its limitations, and some
alternative use cases. By Ross McNairn.
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 Hi, this is Gergely with a subscriber-only issue of the Pragmatic Engineer
Newsletter. In every issue, I cover challenges at Big Tech and startups through the lens
of engineering managers and senior engineers. To get articles like this in your inbox,
every week, subscribe:

I recently spoke with Karthik Hariharan, who heads up engineering at VC firm

Goodwater Capital, and he highlighted a trend he’d spotted:

“There’s an engineering project I’m seeing almost every startup building a Large

Language Model (LLM) put in place: building their own Retrieval Augmentation

Generation (RAG) pipelines.

RAGs are a common pattern for anyone building an LLM application. This is because

it provides a layer of ‘clean prompts’ and fine-tuning. There are some existing open-

source solutions, but almost everyone just builds their own, anyway.”

I asked a few Artificial Intelligence (AI) startups about this, and sure enough, all do build

their own RAG. So, I reached out to a startup I know is doing the same: Wordsmith AI.

It’s an AI startup for in-house legal teams that’s making heavy use of RAG, and was co-

founded by Ross McNairn. He and I worked for years together at Skyscanner and he

offered to share Wordsmith AI’s approach for building RAG pipelines, and some

learnings. Declaration of interest: I’m an investor in Wordsmith, and the company has
recently launched out of stealth.

GERGELY OROSZ ROSS MCNAIRN

131

https://newsletter.pragmaticengineer.com/p/rag/comments
javascript:void(0)
https://twitter.com/hkarthik
https://www.wordsmith.ai/
https://www.linkedin.com/in/rossmcnairn/
https://blog.pragmaticengineer.com/investing/
https://www.wordsmith.ai/
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Today, we cover:

1. Providing an LLM with additional context

2. The simplest RAGs

3. What is a RAG pipeline?

4. Preparing the RAG pipeline data store

5. Bringing it all together

6. RAG limitations

7. Real-world learnings building RAG pipelines

Today’s article includes a “code-along,” so you can build your own RAG. View the code

used in this article at this GitHub repository: hello-wordsmith. To keep up with Ross,

subscribe to his blog or follow him on LinkedIn.

With that, it’s over to Ross:

Hi there! This post is designed to help you get familiar with one of the most

fundamental patterns of AI software engineering: RAG, aka Retrieval Augmented

Generation.

I co-founded a legal tech startup called Wordsmith, where we are building a platform

for running a modern in-house legal team. Our founding team previously worked at

Meta, Skyscanner, Travelperk and KPMG.

We are working in a targeted domain – legal texts – and building AI agents to give in-

house legal teams a suite of AI tools to remove bottlenecks and improve how they work

with the rest of the business. Performance and accuracy are key characteristics for us,

so we’ve invested a lot of time and effort in how to best enrich and “turbo charge”

these agents with custom data and objectives.

We ended up building our RAG pipeline, and I will now walk you through how we did it

and why. We’ll go into our learnings, and how we benchmark our solution. I hope that

Introduction

https://github.com/wordsmith-ai/hello-wordsmith
https://www.rossmcnairn.com/
https://www.linkedin.com/in/rossmcnairn
https://www.wordsmith.ai/
https://www.wordsmith.ai/benchmarks
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the lessons we learned are useful for all budding AI engineers.

Have you ever asked ChatGPT a question it does not know how to answer, or its answer

is too high level? We’ve all been there, and all too often, interacting with a GPT feels like

talking to someone who speaks really well, but doesn’t know the facts. Even worse,

they can make up the information in their responses!

Here is one example. On 1 February 2024, during an earnings call, Mark Zuckerberg laid

out the strategic benefits of Meta’s AI strategy. But when we ask ChatGPT a question

about this topic, this model will make up an answer that is high-level, but is not really

what we want:

ChatGPT 3.5’s answer to a question about Meta’s AI strategy. The answer
is generalized, and misses a critical source which answers the question

This makes sense, as the model’s training cutoff date was before Mark Zuckerberg

1. Providing an LLM with additional context

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc39fb336-b9a4-43b3-8cb1-7c95022ed02e_1536x998.png
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made the comments. If the model had access to that information, it would have likely

been able to summarize the facts of that meeting, which are:

“So I thought it might be useful to lay out the strategic benefits [of Meta’s open

source strategy) here. (...)

The short version is that open sourcing improves our models. (...)

First, open-source software is typically safer and more secure as well as more

compute-efficient to operate due to all the ongoing feedback, scrutiny and

development from the community. (...)

Second, open-source software often becomes an industry standard. (...)

Third, open source is hugely popular with developers and researchers. (...)

The next part of our playbook is just taking a long-term approach towards the

development.”

LLMs’ understanding of the world is limited to the data they’re trained on. If you’ve

been using ChatGPT for some time, you might remember this constraint in the earlier

version of ChatGPT, when the bot responded: “I have no knowledge after April 2021,” in

several cases. 

There is a bunch of additional information you want an LLM to use. In the above

example, I might have the transcripts of all of Meta’s shareholders meetings that I want

the LLM to use. But how can we provide this additional information to an existing

model?

The most obvious solution is to input the additional information via a prompt; for

example, by prompting “Using the following information: [input a bunch of data] please

answer the question of [ask your question].”

Providing an LLM with additional information

Option 1: input via a prompt
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This is a pretty good approach. The biggest problem is that this may not scale because

of these reasons:

The input tokens limit. Every model has an input prompt token limit. At the time of

publication this is 4.069 tokens for GPT-3, 16,385 for GPT-3.5, 8,192 for GPT-4,

128,000 for GPT-4 Turbo, 200.000 for Anthropic models. Google’s Gemini model

allows for an impressive one million token limit. While a million-token limit greatly

increases the possibilities, it might still be too low for use cases with a lot of

additional text to input.

Performance. The performance of LLMs substantially decreases with longer input

prompts; in particular, you get degradation of context in the middle of your prompt.

Even when creating long input prompts is a possibility, the performance tradeoff

might make it impractical.

We know LLMs are based on a massive weights matrix. Read more on how ChatGPT
works in this Pragmatic Engineer issue. All LLMs use the same principles.

An option is to update these weight matrices based on additional information we’d like

our model to know. This can be a good option, but it is a much higher upfront cost in

terms of time, money, and computing resources. Also, it can only be done with access

to the model’s weightings, which is not the case when you use models like ChatGPT,

Anthropic, and other “closed source” models.

The term ‘RAG’ originated in a 2020 paper led by Patrick Lewis. One thing many people

notice is that “Retrieval Augmented Generation” sounds a bit ungrammatical. Patrick

agrees, and has said this:

“We always planned to have a nicer-sounding name, but when it came time to write

the paper, no one had a better idea.”

RAG is a collection of techniques which help to modify a LLM, so it can fill in the gaps

and speak with authority, and some RAG implementations even let you cite sources.

Option 2: fine-tune the model

Option 3: RAG

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://newsletter.pragmaticengineer.com/i/141865286/how-does-chatgpt-work-a-refresher
https://arxiv.org/pdf/2005.11401.pdf
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The biggest benefits of the RAG approach:

Give a LLM domain-specific knowledge You can pick what data you want your LLM to

draw from, and even turn it into a specialist on any topic there is data about. 

This flexibility means you can also extend your LLMs’ awareness far beyond the model’s

training cutoff dates, and even expose it to near-real time data, if available.

Optimal cost and speed. For all but a handful of companies, it's impractical to even

consider training their own foundational model as a way to personalize the output of an

LLM, due to the very high cost and skill thresholds. 

In contrast, deploying a RAG pipeline will get you up-and-running relatively quickly for

minimal cost. The tooling available means a single developer can have something very

basic functional in a few hours.

Reduce hallucinations. “Hallucination” is the term for when LLMs “make up”

responses. A well-designed RAG pipeline that presents relevant data will all but

eliminate this frustrating side effect, and your LLM will speak with much greater

authority and relevance on the domain about which you have provided data.

For example, in the legal sector it’s often necessary to ensure an LLM draws its insight

from a specific jurisdiction. Take the example of asking a model a seemingly simple

question, like:

How do I hire someone?

Your LLM will offer context based on the training data. However, you do not want the

model to extract hiring practices from a US state like California, and combine this with

British visa requirements! 

With RAG, you control the underlying data source, meaning you can scope the LLM to

only have access to a single jurisdiction’s data, which ensures responses are

consistent.

Better transparency and observability. Tracing inputs and answers through LLMs is
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very hard. The LLM can often feel like a “black box,” where you have no idea where

some answers come from. With RAG, you see the additional source information

injected, and debug your responses.

The best way to understand new technology is often just to play with it. Getting a basic

implementation up and running is relatively simple, and can be done with just a few

lines of code. To help, Wordsmith has created a wrapper around the LlamaIndex open

source project to help abstract away some complexity. You can get up and running,

easily. It has a README file in place that will get you set up with a local RAG pipeline on

your machine, and which chunks and embeds a copy of the US Constitution, and lets

you search away with your command line.

This is as simple as RAGs get; you can “swap out” the additional context provided in

this example by simply changing the source text documents!

This article is designed as a code-along, so I'm going to link you to sections of this

repo, so you can see where specific concepts manifest in code.

To follow along with the example, the following is needed:

An active OpenAI subscription with API usage. Set one up here if needed. Note:
running a query will cost in the realm of $0.25-$0.50 per run.

Follow the instructions to set up a virtual Python environment, configure your

OpenAI key, and start the virtual assistant.

This example will load the text of the US constitution from this text file, as a RAG input.

However, the application can be extended to load your own data from a text file, and to

“chat” with this data.

Here’s an example of how the application works when set up, and when the OpenAI API

key is configured:

2. The simplest RAGs

https://github.com/wordsmith-ai/hello-wordsmith
https://www.llamaindex.ai/
https://github.com/wordsmith-ai/hello-wordsmith
https://github.com/wordsmith-ai/hello-wordsmith
https://platform.openai.com/settings/organization/billing/overview
https://github.com/wordsmith-ai/hello-wordsmith
https://github.com/wordsmith-ai/hello-wordsmith/blob/main/hello_wordsmith/public_wordsmith_dataset/us_constitution.txt
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The example RAG pipeline application answering questions using the US
Constitution supplied as additional context

If you’ve followed along and have run this application: congratulations! You have just

executed a RAG pipeline. Now, let’s get into explaining how it works.

A RAG pipeline is a collection of technologies needed to enable the capability of

answering using provided context. In our example, this context is the US Constitution

and our LLM model is enriched with additional data extracted from the US Constitution

document. 

Here are the steps to building a RAG pipeline:

 

Step 1: Take an inbound query and deconstruct it into relevant concepts

Step 2: Collect similar concepts from your data store

3. What is a RAG pipeline?

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0725b694-9547-4c8e-ba32-cda83db425f5_1180x772.png
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Step 3: Recombine these concepts with your original query to build a more relevant,

authoritative answer.

Weaving this together:

A RAG pipeline at work. It extends the context an LLM has access to, by
fetching similar concepts from the data store to answer a question

While this process appears simple, there is quite a bit of nuance in how to approach

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fdecd2b92-02ee-4fba-95da-61c75c473f26_1556x1572.png
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each step. A number of decisions are required to tailor to your use case, starting with

how to prepare the data for use in your pipeline.

To start, we need to identify the data we will use to enrich responses with. We then load

it into a vector data store, which is what we use during the search phase.

Steps in preparing a RAG pipeline

Before we can harness the data, we need to convert it into a format that lets us perform

4. Preparing the RAG pipeline data store

Load the data

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F58ef0278-d4b4-4956-91be-a1a75c7a6aea_1524x1306.png
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the manipulations we will need, such as creating embeddings (basically, vectors.)

In our example RAG pipeline, we use the LlamaIndex, a comprehensive data framework

to bridge storing data, and make this data accessible to LLMs. Another popular option
for an LLM data framework is Langchain.

Here’s how we prepare our data in the code:

Loading all files in the “public_wordsmith_dataset” directory. For now, this
is one file: the us_constitution.txt. You can add any file to this directory to

include in the RAG pipeline.

Cleaning up data before storing it is a common-enough step with real world RAG

applications, but we’ve omitted it from our simple use case. For example, if your

application uses web page data as HTML files in the RAG pipeline, then you’ll need to

add preprocessing to remove HTML tags and anything else that is irrelevant for text

processing.

There is an ever-growing list of services and tools that assist with the cleaning of data.

FireCrawl is a good choice for working with web pages. In general, it helps get from

“raw” data to “cleaned” data. There are many similar tools which clean data for AI use

cases; it’s a vibrant and fast-evolving part of the AI ecosystem.

Once we’ve loaded and cleaned the data, we want to split our document into ‘chunks.’

These are the parts we want to retrieve and pass on as context to our LLM.

With RAG pipelines, it’s common enough to work with long documents, such as wiki or

Confluence pages, contracts, and other lengthy documentation. So, why not just feed

the whole document into the LLM? Why “chunk it up?” The reason is that feeding a long

document into an LLM can cause these issues:

Split and chunk the data

https://www.llamaindex.ai/
https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf
https://github.com/wordsmith-ai/hello-wordsmith/blob/main/hello_wordsmith/datastores.py#L38-L42
https://github.com/wordsmith-ai/hello-wordsmith/blob/main/hello_wordsmith/public_wordsmith_dataset/us_constitution.txt
https://www.firecrawl.dev/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc5183360-dc66-4305-9ed9-e74a0cda75d6_1328x204.png
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Degraded performance. LLMs like ChatGPT have self-attention (every token

being aware of every other token) scale quadratically. This means that when

predicting the 100th token, around 10,000 operations are needed. But to predict

the 1,000th token, circa 1 million operations need to be done. This means that the

longer the input, the worse the output performance of the LLM. 

Less useful output. We’ve observed that inputting a long document results in the

LLM receiving a lot of irrelevant data, and responses can become confusing.

Increased cost. The longer the input, the higher the cost of operating the model.

This cost will be crystal clear when using an API like OpenAI, which bills you. If

running your own infrastructure, you’ll observe higher required compute resource

usage, which translates to higher compute cost.

Therefore, deconstructing a long document into “small enough” pieces is a smart move.

With these pieces sized correctly, we can pass in the relevant pieces, and make the

LLMs’ answers more specific, accurate, and faster, at a lower cost!

Deciding how to chunk your data is a major decision with RAG pipelines. There are

many options to choose from when chunking data, but all choices have their own set of

tradeoffs. Here are some examples:

The simplest approach: break the text into 250-500 character chunks.

A slightly more advanced approach: split the text by paragraph.

Even more advanced option: divide chunks by “concept” and do some

preprocessing to make breakpoints between chunks logical. 

Chunking strategies is an area you can get very deep into. There’s a variety of

strategies to use, which the article Chunking strategies for LLM applications by Roie

Schwaber-Cohen, goes through:

Fixed-size chunking: split by the number of tokens

“Content-aware” chunking: chunking by sentence.

Recursive chunking: divide the input text into smaller chunks in a hierarchical,

iterative manner using a set of separators

https://en.wikipedia.org/wiki/Attention_(machine_learning)
https://newsletter.pragmaticengineer.com/i/141865286/scalability-challenge-from-self-attention
https://www.pinecone.io/learn/chunking-strategies/


16.05.2024, 17:56Applied AI Software Engineering: RAG

Page 13 of 29https://newsletter.pragmaticengineer.com/p/rag?utm_source=profile&utm_medium=reader2

Specialized chunking: when working with structured and formatted content like

Markdown or LaTeX

Semantic chunking: attempting to take the meaning of segments within the

document.

In general, smaller chunks tend to help create smaller, more relevant concepts when

you retrieve them. At the same time, they lead to very narrow responses because small

chunks can become disconnected from related chunks.

Chunking is more an art than a science. My advice is to spend plenty of time iterating

your chunking strategy! Get it right for your use case and the source data you have to

work with.

In our code, chunking happens here:

The code that does the chunking. We use a fixed-size chunking strategy,
breaking our document down every 512 characters

This step splits the data up and embeds it, which requires a little more explanation.

Create embeddings

https://github.com/wordsmith-ai/hello-wordsmith/blob/8399c8753841e8eff3e083cf582f2007ac2bbb8b/hello_wordsmith/wordsmith.py#L16
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd51d72f9-df33-48a2-b84f-c4dcc68e678a_1082x570.png


16.05.2024, 17:56Applied AI Software Engineering: RAG

Page 14 of 29https://newsletter.pragmaticengineer.com/p/rag?utm_source=profile&utm_medium=reader2

We’ve broken our documents into chunks, hooray! But how will we know which chunks

will be relevant for a question that’s asked?

Here’s how Evan Morikawa of OpenAI defines the concept of embeddings in the article,

Scaling ChatGPT:

“An embedding is a multi-dimensional representation of a token. We [OpenAI]

explicitly train some of our models to explicitly allow the capture of semantic

meanings and relationships between words or phrases. For example, the embedding

for “dog” and “puppy” are closer together in several dimensions than “dog” and

“computer” are. These multi-dimensional embeddings help machines understand

human language more efficiently.”

Creating an embedding from a token (a string). Source: Scaling ChatGPT

Let me offer an alternative way for thinking about embeddings which I use, and that

builds on the concept of vectors, and K nearest neighbor vector search.

Vector. A vector is a string of numbers, which allows a piece of information like a

sentence, or a paragraph to be expressed in a way an algorithm understands. When

https://newsletter.pragmaticengineer.com/i/141865286/how-does-chatgpt-work-a-refresher
https://platform.openai.com/docs/guides/embeddings
https://newsletter.pragmaticengineer.com/i/141865286/how-does-chatgpt-work-a-refresher
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F28c8bf23-cd30-421f-857c-cfd113f83161_1600x887.png
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compared correctly, similar, related concepts are closer to each other in the vector

space.

Imagine using keyword search and a more traditional search method for searching

chunks; retrieving all the records from a database would typically require that you pre-

categorized all the data, or had an index that could help you look them up. But we want

something more flexible, as we don't have well structured metadata for every query we

might want to run. Using vectors makes it easier to deal with this kind of problem

space.

K-nearest neighbors (KNN.) KNN is an algorithm that takes a bunch of vectors and

organizes them, based on how similar they are to each other. Using KNN on a collection

of vectors, we find “similar concept groups".

A vector embedding is a vector that represents a concept like a token, a sentence, a

paragraph, or anything else. It’s effectively the “fingerprint of an idea.”

Using vector embeddings makes it simpler for the AI model to interact with these

concepts. It also makes it straightforward to search for similar concepts when it wants

to query your database. For example the Vector of an ‘apple’ and the vector of a ‘pear’
will be more similar than the vectors of an ‘apple’ and an ‘app’.

Turning words into embedding and visualizing those embeddings in a 2D
space. Source: Hariom Gautam on Medium

https://medium.com/@hari4om/word-embedding-d816f643140
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F71b29019-656c-4a95-ac45-3e7359a315da_1382x566.png
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Pre-trained embedding models generate a vector embedding from any input. Thanks

to the pre-training, they already categorize the inputs reliably enough.

OpenAI offers an API called Embeddings that can be used to process chunks. Feed in a

chunk, and receive an embedded vector in return. Of course, using this API comes with

its own cost. The collected works of William Shakespeare are 3,000 pages long, or circa

835,000 words. Embedding the complete text with OpenAI’s ada v2 embedding model

would cost about $0.10 (as the cost is $0.10 per 1M tokens, and an English word usually

comes to about 1.3 tokens)

When we query our data, the query goes through a similar process to embedding. The

semantics of the query are deconstructed into vectors, and these vectors make it easy

to compare with stored data.

The open source community also offers some exceptional options. The online AI

community, Hugging Face, has a leaderboard of the best embedding models available,

ranking them according to the Massive Text Embedding Benchmark (MTEB.)

https://platform.openai.com/docs/guides/embeddings
https://openai.com/api/pricing/
https://gpt.space/blog/understanding-openai-gpt-tokens-a-comprehensive-guide
https://huggingface.co/spaces/mteb/leaderboard
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A screenshot of LLM models ranked by MTEB. Source: Hugging Face

What the best model is for you will depend on your use case, and most RAG pipelines

will want to use a semantic embedding model like Bidirectional Encoder

Representations from Transformers (BERT.)

Now we’ve extracted and cleaned the data, chunked it, and created our embedding, it’s

time to store it. We need to choose a database that’s effective at running our KNN

operations. Vector databases are tailored to support KNN lookup with great

performance, so using one will provide optimal performance for search.

Popular vector databases include Pinecone and Weaviate. Additionally, all major cloud

providers offer multiple vector databases. Vector databases are a fast-evolving space,

so you need to do research.

When prototyping, you can get away with using a more traditional database like MySQL

Store the data

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/docs/transformers/main/en/model_doc/bert
https://www.pinecone.io/
https://weaviate.io/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5eaa6dac-0d6b-4256-ae2f-525424a8f086_1600x1087.png
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or PostgreSQL to store embeddings. Should your application receive production traffic,

the performance of these SQL databases will likely become critical enough to justify

moving to a vector-based one.

With our data pipeline prepared, the remaining steps are surprisingly simple!

5. Bringing it all together

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fb3dadd54-98c1-46a6-b38c-295b1145a878_1556x1572.png
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A RAG pipeline at work. The data store is ready and we just need to do
steps 2 and 3

The work that’s left to do:

Step 2: Collect similar concepts from the data store. We use a vector database to

query the data. 

In our code, the very bottom line does the retrieval:

Collecting similar concepts (chunks) from our stored data. See this line in
the example codebase

The “retriever” variable now contains the 20 chunks in similarity (as the value of

_TOP_K_RETRIEVAL is 20). 

Step 3: Recombine these concepts with the original query to build a more relevant and

authoritative answer.

With the related chunks available, we now create a new query, which is the updated

query we want to pass into the LLM:

Context information from multiple sources is below.

---------------------

{LIST OF THE 20 CHUNKS}

---------------------

"Given the information from multiple sources and not prior knowledge, answer the

https://github.com/wordsmith-ai/hello-wordsmith/blob/main/hello_wordsmith/query_pipeline.py#L49
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F80f1a555-446d-4123-bdfb-1ca963a2d8bf_1458x366.png
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query.

Query: {ORIGINAL QUERY}

Answer:

In our code, we create the above string by filling out the list of the 20 most relevant

chunks (as context_str) and the original query (as query_str):

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6a2981d5-16c9-470d-bcbb-828a22db7d3e_1564x1600.png
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The code to generate our query pipeline. This is it! Browse the code here.

If you’ve followed this code-along, then congratulations! You now know how to code a

simple RAG pipeline!

RAG is a powerful set of tools that can help you focus AI onto your data. However, it's

not a perfect fit for all use-cases, and there are some areas in which RAG does poorly.

The RAG approach will not result in great output for summarizing. This is because with

the RAG approach, documents are broken into many small sections, meaning that

results will be poor if seeking insight that needs context from an entire document. For

example, if asked: “give a summary of the key points in our contract with Microsoft,” an

LLM that performs this well must process the entire contract, not just 2 or 3 chunks

that are the assigned “key parts.”

For a model that performs well with summarization paths, consider an alternative

approach of detecting use cases for which you route summarization queries to a

different pipeline. For such cases, load the entire document that needs to be

summarized. Doing so results in worse performance and higher cost, but it’s the only

way to get a more accurate response.

More complex questions often have an element of reasoning. Take the question:

“What percentage of agreements have their governing law in South Africa?”

This question needs to be broken down. Also, data needs to be collected from other

data sources to determine the correct answer. For this specific question, to answer it

correctly we need to follow these steps:

1. Retrieve all agreements with their law in South Africa.

6. RAG limitations

Summarization

Multi-part, or hybrid questions

https://github.com/wordsmith-ai/hello-wordsmith/blob/main/hello_wordsmith/query_pipeline.py#L24
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2. Determine how many such agreements there are.

3. Process the math to recombine the output. It’s important to note that most LLMs
are not good with math and you may want to not use an LLM for it!

To do a good job with such a complex query, RAG alone is insufficient, although it’s

necessary at some steps. For the best results, build a higher-level orchestration layer,

and coordinate other AI agents working in this pipeline to process complex queries.

We’ve only scratched the surface of RAG in building this simple pipeline. For the more

technically-minded reader who wants to experiment in this space, below are seven

things that we at Wordsmith wish we’d had known before, which would’ve saved time

while building our AI solutions.

#1: Natural language is not always the best input for an LLM

Instead of using plain text, it is often better to use more structured input and output

with LLMs; for example, JSON. A structured format simplifies parsing of the results, and

can also increase the quality of an answer. This is because additional structured

metadata can be passed along with the chunks of text to the prompt. The model can

then be asked to produce additional outputs, and these extra outputs can help improve

the answer itself.

This structured approach helps make your instructions highly targeted and very

precise. 

#2: The quality of your evaluation “evals” are critical for making reliable progress

“Evals” refers to a set of scenarios used to grade the quality of an agent's responses to

questions. Each scenario has an input and an output which you can run as you go.

LLMs have inherently unpredictable output, meaning there’s a lot of trial and error. So

it’s essential to have a strong set of test cases for tracking your progress. 

Invest time in defining these “evals” upfront. I’ve written more about how we

7. Real-world learnings

https://en.wikipedia.org/wiki/JSON
https://www.wordsmith.ai/benchmarks
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approached our evaluation criteria.

#3: Improve performance by asking the LLM to do extra things

Here are two ways to significantly improve performance 

1. Combine the context with the original question, then ask the LLM to rebuild a

better answer. 

2. Ask the LLM to capture the user’s intent from the original question, and offer

reasoning.

In my experience, both approaches improved the output’s quality.

#4: Get the right token size as LLM context 

If you feed too few chunks or too little context into the LLM, you’ll get narrow,

lightweight answers. Feed in too many chunks and too much context, and the model will

start overlooking essential information and get confused. Experiment to get the right

chunk size, and the correct number of tokens for better performance.

A simple reference point that seems to work well is passing about 16,000 tokens for

GPT-4 Turbo.

#5: Chunking matters a lot – A LOT!

A way to improve performance is to blend multiple chunking strategies to create

overlapping chunks, which can help build some resilience into the data to ensure you

get the most relevant manifestation.

For example, create fixed-size chunks for 2,500 character size and 500 character size.

Calculate the embeddings for both options, which means embedding the same data

several times. During a search, your system will retrieve and use the best fitting chunk,

which could be the shorter or longer one!

#6: Use suitable document parsers

https://www.wordsmith.ai/benchmarks
https://help.openai.com/en/articles/8555510-gpt-4-turbo-in-the-openai-api
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There are so many open source solutions to help parse and pre-process documents, so

take some time to research the best ones for your use case, whose output fits well. 

Document parsers tend to struggle to handle certain formats, like nested numbered

lists. But at Wordsmith, these are very important in contracts and legal documents! So

we had to “hand-roll” our custom solution, after failing to find an open source

document parser that did the job.

#7: Use output formatting which the model is comfortable with

Each foundation model has been trained on different source data. This means each

model will work better or worse with certain input and output formats. For example,

GPT4 and Mistral are efficient when using JSON and Markdown, suggesting they have

been extensively trained with this kind of data. Meanwhile, Claude seems to work well

when using Markdown, but less so with JSON. Experiment with models, learn which

formats work better, and choose models based on their strengths.

Beyond RAGs

RAG is the foundation of nearly every LLM application, and this space is moving fast. I

sense a “new dawn” is starting to break in multi-agent orchestration and interaction.

These new architectures will give developers the ability to chain many agents together,

with each one performing a specialist role in a pipeline. Such advanced pipelines will

help progress beyond many of the constraints with which basic RAG approaches

struggle.

Right now, the cost of running LLMs can still be pretty high; for example, our test suite

cost $30 to execute on each run. However, the cost of running LLMs is falling quickly,

and the performance of these tools is increasing just as fast. 

It’s an exciting time to be building on Gen AI and LLMs. I hope this overview and code-

along helps you get started!

A big thanks to Derek and Gigz for the effort they put into helping contribute to the
hello_wordsmith repository!

https://www.linkedin.com/in/derek-johnston-8829841a0/
https://www.linkedin.com/in/giginiak/
https://github.com/wordsmith-ai/hello-wordsmith
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Gergely again. Thanks very much Ross and the Wordsmith team, for this detailed

walkthrough about building a RAG pipeline. You can follow Ross on LinkedIn, X or

subscribe to his blog, where he writes on topics like defensible moats in the age of

generative AI. Also, Wordsmith is hiring for product engineering and sales.

My takeaways from this deep dive:

Data is one of the biggest moats in most GenAI use cases. There are two types of AI

startups:

1. Those building foundational models, of which there are a handful and among

whom OpenAI is the best known, with its GPT models. There’s also Anthropic

(Claude,) Google (Gemini,) Meta (Llama,) and Mistral. These companies spend up

to hundreds of millions of dollars on training these models, then offer them for use;

sometimes for a fee, and sometimes for free.

2. Ones building applications on top of foundational models. The majority of startups

utilize foundational models, and build creative use cases like professional

headshots (Secta AI, as covered in the bootstrapped companies article,) or

Wordsmith, which offers LLM-powered tools for legal professionals.

For the second category which includes most startups, the two biggest advantages are

speed of execution, or access to unique data which competitors don’t possess. Speed

of execution can be a competitive advantage, but having access to data which

competitors don’t feels like the biggest, durable advantage for a startup.

RAG is one of the simplest ways to use “data as a moat” with AI models. For any

company with a data moat, RAG is the simplest way to enhance any LLM model without

exposing the underlying data to the outside world.

Sourcegraph has used RAG to produce standout code suggestions. Head of

Engineering Steve Yegge wrote last December:

“Cody’s [Sourcegraph’s AI coding assistant] secret sauce and differentiator has

Takeaways

https://www.linkedin.com/in/rossmcnairn/
https://twitter.com/rossmcnairn
https://www.rossmcnairn.com/
https://www.rossmcnairn.com/p/ctos-view-on-a-defensible-moat-in
https://www.wordsmith.ai/careers/open-positions#open-positions
https://newsletter.pragmaticengineer.com/i/137627687/overview-of-the-companies
https://sourcegraph.com/blog/rag-to-riches
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always been Sourcegraph’s deep understanding of code bases, and Cody has

tapped into that understanding to create the perfect RAG-based coding assistant,

which by definition is the one that produces the best context for the LLM.

That’s what RAG (retrieval-augmented generation) is all about. You augment the

LLM’s generation by retrieving as much information as a human might need in order

to perform some task, and feeding that to the LLM along with the task instructions.

(...)

Producing the perfect context is a dark art today, but I think Cody is likely the

furthest along here from what I can see. Cody’s Context has graduated from “hey we

have vector embeddings” to “hey we have a whole squad of engines.” 

RAG is surprisingly easy to understand! At root, all RAG does is take an input query

and add several sentences or paragraphs of additional context. Getting this additional

context is an LLM search task, and performing this task involves preparing the

“context” data, which is additional data which the LLM hasn’t been trained on.

Unoptimized RAG is expensive! Running the example code, I saw a $1.38 charge after

asking 5-10 questions from this model. I was wondering where the billing was coming

from: the price of creating embeddings, or the cost of using GPT-4?

It turns out that all the cost was for using GPT-4, and the model charged $5 per 1M

tokens. For each question I asked, the RAG pipeline added plenty of additional context,

which made the query expensive in cost (and processing, I might add.) For a prototype

approach, this cost is not a problem. However, for production use cases, heavy

optimization would be needed, which could come from passing in more targeted – but

less, overall – context. Or it could mean using a model that’s cheaper to run, or

operating the model ourselves for better cost efficiency.

A RAG pipeline is a basic building block of GenAI applications, so it’s helpful to be

familiar with it. One reason for this deep dive with Ross is that RAG pipelines are

common at AI startups and products, but they remain a relatively new area, meaning

that a lot of “build-it-yourself” takes place. It’s easy enough to build a basic RAG

pipeline, as Ross shows. The tricky part is optimizing things like chunking strategy,
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chunk size, and the context window.

If you need or want to build LLM applications, a RAG pipeline is a helpful early building

block. I hope you enjoyed this deep dive into such an interesting, emerging area!

Update on 14 May 2024: updated token limits.
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